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Though shorter laser pulses can also be produced, pulses of the 100 fs range are typically used in femtosecond
kinetic measurements, which are comparable to characteristic times of the studied processes, making detection
of the kinetic response functions inevitably distorted by convolution with the pulses applied. A description of
this convolution in terms of experiments and measurable signals is given, followed by a detailed discussion
of a large number of available methods to solve the convolution equation to get the undistorted kinetic signal,
without any presupposed kinetic or photophysical model of the underlying processes. A thorough numerical
test of several deconvolution methods is described, and two iterative time-domain methods (Bayesian and
Jansson deconvolution) along with two inverse filtering frequency-domain methods (adaptive Wiener filtering
and regularization) are suggested to use for the deconvolution of experimental femtosecond kinetic data sets.
Adaptation of these methods to typical kinetic curve shapes is described in detail. We find that the model-
free deconvolution gives satisfactory results compared to the classical “reconvolution” method where the
knowledge of the kinetic and photophysical mechanism is necessary to perform the deconvolution. In addition,
a model-free deconvolution followed by a statistical inference of the parameters of a model function gives
less biased results for the relevant parameters of the model than simple reconvolution. We have also analyzed
real-life experimental data and found that the model-free deconvolution methods can be successfully used to
get undistorted kinetic curves in that case as well. A graphical computer program to perform deconvolution
via inverse filtering and additional noise filters is also provided as Supporting Information. Though
deconvolution methods described here were optimized for femtosecond kinetic measurements, they can be
used for any kind of convolved data where measured experimental shapes are similar.

Introduction refs 1—7 usually fail when applied to femtosecond kinetic data.
We have been working on developing model-free deconvolution
methods that can be used to deconvolve ultrafast kinetic traces.
Our preliminary results using inverse filtering have been

Deconvolution in chemistry dates back to the early 1930s.
The first (linear iterative) deconvolution method was originally
described in a physms jourfand u§ed mos_,tly to “sharpen published in two short pape?49
convolved experimental spectral lines. With the advent of hi q ibe th licati f i
reasonably fast computers and the fast Fourier transform (FFT), In this paper we describe the application of nonlinear

this had been replaced by the linear deconvolution method basedcieconvolut!on methods that we s_ucqessfully use for model-free
on Fourier transform33 which is usually called “inverse deconvolution of femtosecond kinetic traces, based on a large

filtering™.4 The need for deconvolution also emerged in the NUMPer of further computer experiments and data analysis since
evaluation of pulse radiolysis, flash photolysis, and later laser tEe EUbI'_?at'?nhOf refs 9§nd 10f' Iln thfe nelxt seckt_lon,_we explain
photolysis results, when studied kinetic processes were so fast'€ details of the procedure of ultrafast laser kinetic measure-

that reaction times were comparable to the temporal width of ments leading to the detected convolved kinetic traces. In the
the pulse or lamp signafsA number of methods have been following section we outline the mathematical background of

used ever since to get the deconvolved kinetic signal. A critical nhonparametric deco“"o"ﬂ“of‘ methods that might be qsed to
review of the deconvolution methods is described in two evaluat.e femtosecon.d klnet!c data, fOHOWEd .by their '”?p'e.'
papers:7 which deal mostly with the evaluation of nanosecond mentation and numerical testing on synthetlc (simulated) kinetic
to picosecond time scale fluorescence or luminescence datalraces- Flnally,_ we show deconvolution results of measured
collected usually by single photon counting techniques. femtosecond kinetic data.

The availability of femtosecond pulse lasers led to the
development of femtochemistbywhere the time window  Convolution of the Detected Femtosecond PumpProbe
enables the very detection of the transition state in an elementarySignals
reaction. However, due to the very small time window of the
measurement, a typical femtosecond kinetic trace usually
contains fewer data points than picosecond kinetic traces. All
deconvolution methods are very much sensitive to experimental
noise, so the “classical” deconvolution methods described in

Elementary chemical reactions occur on the time scale of
molecular vibrations, so they can only be followed with sub-
Ipicosecond time resolution. Electronic devices with their top
frequency of about 10 GHz cannot follow changes at this time
scale. The necessary resolution is easily achieved using the

- 11 . .
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into the reaction mixture after a delay ofthen we can detect
at t' for the reaction initiated at time the instantaneous
absorption response

10 I(T=t)

lins(TLY) =1 (7 — 1) x 107 (5)

or, substituting the linear approximation into the expression for
: . . o AOD in egs (3) and (4),

Figure 1. Notation used to describe the convolution integral detected

in femtosecond pumpprobe kinetic measurements(t) is the pump AOD, (T ) =

(“exciting”) pulse andln(z — t') is the probe (“measuring”) pulse Inst72 ™

0t ft time

intensity profile. 19z —t) — 1 2(z — t')(1 — In10ec(t,t')l)

u = = In10ec(t )l
properties of the reactive system, while an integrated signal of | (T — 1)
the detector is measured with the usual speed of the relevant (6)

electronic device. Delay times on the femtosecond scale are

readily obtained by varying the optical path length of either = However, aslr?,(r — t') is time dependent, the quantity
the pump or the probe beam. Considering the velocity of light In10ecl is detected with time-dependent “weights”. Let us
in air, a difference of 0.3um in path length results in  introduce In(r — t') as |n°1(r — t') divided by its integral
approximately 1 fs in time delay. As both the pump and the between—c and+c. Obviously, the function(z — t') has
probe pulses should have a limited energy range (spectral width)the following property:

to get reasonable selectivity both in excitation and in detection,

the temporal width of the pulses cannot be too small, due to f°°| (r—t)dr =1 @)
the limitation imposed by the uncertainty relati&riThe usual —eom
spectral width of about 5 nm in the visible range corresponds
to about 100 fs transform limited (minimal) pulse width. If
characteristic times of the studied reactions are in the few
hundreds of femtoseconds time scale, the convolution of the
“instantaneous” kinetic response with the pump and the probe
pulse profiles can severely distort the detected signal.

The description of this convolution in quantum mechanical
terms is extensively discussed in a recent papeere we show We emphasize again thif(z — t') is no more the detected
the convolution in terms of the experiments and measurable intensity of the probe pulse prior to excitation but the detection
signals. For the sake of simplicity, let us deal with absorption probability density. (As the intensity cancels in eq (6), its
measurements. A transient absorption can be described by Beer'@bsolute value is not needed in further calculations.) Similarly,

and can be considered as the detection probability density
function at timet'. Using this function, we can write the integral
of AOD detected for the excitation at tinteas

AOD@r,t) =In10 [71 (r — t)ec(t —t)l dt’  (8)

law: if 1(t) denotes the probability density function derived from

the absolute intensity of the pump pulse normalized to unit
| =1,x 10 @ =, "1 (1) integral, the total concentration present at tithgenerated by

the entire exciting (pump) pulse can be written as

wherelg is the detected light intensity without excitation and v

is the detected light intensity after excitatieris the (decadic) ct) = f_ e et — 1) dt 9)

molar absorptivity coefficientc is the concentration of the

transient species generated by the excitation | ésthe optical Redefining the functior(t’ — t ) so thatc(t’ — t) = 0 for all

path length in the absorbing medium.etfl is small, then the  t > t' (this is the usual kinetic definition; the concentration
exponential can be replaced by its Taylor series up to the first- change is zero for negative reaction times), we can write eq (9)
order term: in a form that is more common in probability theory:

To make use of this approximation, differential optical densities

(denoted byAOD) are usually detected: This expression can more easily be treated in mathematical

terms as well, as the integral obtained combining egs (8) and

lo—1 e (10),
AOD = I =1-10"° 3
0 AOD(@) =1In10 [71(x — ) [ "1t c(t — )l dtdt
which can be written using the approximation (2) as (12)
AOD ~ 1 — (1 — In10ecl) = In10ecl (4) is easy to be written as a convolution. Ttenvolution of the

functionsf andg is defined* as

If AOD ~ 0.1, the difference between the exact expression
(_3) and the approximation 4)is be_low 0.5%, SO we can use the f®g= f_:f(t) o(r — t) dt (12)
linear approximation. To apply this result in the detection of
femtosecond kinetic traces, let us consider two pulses as show
in Figure 1.

When exciting with the pulsk(t) and measuring the temporal _ pe
evolution of absorption with the pulsﬁ(r — t'), which arrives corrgh) = f _9(T + 1) h(t) dt (13)

"rhe correlation of the functionsg andh can be writte#* as
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This latter can also be written as a convolution integral if we either Laplace or Fourier transforms work also only for
used(r — t), the functiong(r + t) with its inverted time scale: multiexponential decay models. The method of modulating
functions is an elegant, noniterative method, which provides
corr(g,h) = L °°g(f + 1) h(t) dt = ffg(r —t) h(t) dt = the parameters of multiexponential decay by solving integral
® e o equations. There are only two methods leading primarily to a

goh (14) deconvolved datasetd(t) which have been used in laser

If there are more than one transient species absorbing at thePhotolysis. One is the .so-called exponentiallseries method. It is
probe wavelength, we should sum the contributions of alhthe bas_ed on the assumption that laser photolysis measurements can
absorbing species writingj,_;excd in place ofecl. Making use ge mtergreted as tthhe tstuhm of a fe}w exponetl_'lt;als. T:\éshmethod
of the fact that the order of integration is immaterial (or of the 0€sS Not Suppose that the sum of eéxponentials wou'd have any

commutability and associability of convolution) we can write physmal meaning. Accordingly, time constants are f!xed when
using this method, and a least-squares estimation of the

n amplitudes is performed so that the convolution of the expo-
AOD(z) = [corr(l,,! )] ® (In 10 Zekckl) (15) nential series with the effective pulse matches the measured
k= (convolved)i(t) function. The nonconvolved series then repre-
sents the nonconvolvea(t) function. The other direct decon-

The first function on the right side can be considered as an yolution method is based on inverse filtering using Fourier
“effective pulse” which in practice also includes a time transforms, with special noise handling derived from the
broadening due to the difference of the refractive indices at the pojssonian error of the data and an exponential extrapolation
pump and the probe wavelengths, also called group velocity of the dataset. All the aforementioned methods and the relevant
mismatch. original papers are described in the refererfces.

Summarizing the above results we can state that the detected \We can summarize that none of the above methods are
integrated differential optical density is the convolution of the completely free of (usually arbitrary) models, most of them
effective pulse with the instantaneous transient differential requiring a multiexponential decay of the species formed by
optical density In 103,_excd.*® This result is obtained for  excitation with the pump pulse. However, femtochemical
transientabsorptionmeasurements. However, fifiorescence processes, especially in condensed media, are usually more
emissionis measured, the intensity of the detected signal is complicated and cannot be described as simple sums of
proportional to the probe or gate beam intenkijtywhich excites exponential functions. Iterative least squares is always a
the fluorescing species or creates the sum frequency. Consereasonable choice, if we have a priori knowledge of a reaction
quently, the same formalism applies, except for a proportionality mechanism and related photodynamic properties. Unfortunately,

constant. _ _ in most of the cases, we do not have it. Therefore, it would be
' Let_ us reformulate eq (15) in terms of the usgal notation of useful to be able to directly deconvolve the measuifp
imaging. Thus, AOD(z) is called theimage function (t), the function. The deconvolved(t) may be more instructive for the

effective pulse is thepread function(#), and the instantaneous  chemist to find out possible mechanisms, and testing the
response function is thebject function ). It is this latter we mechanisms would need much less computation without the
want to infer from the measured data. The above convolution convolution involved in the model function. In addition, if a
can then be rewritten as reliable deconvolution can be obtained, the additional uncertainty
. of the model parameters due to the correlation with the effective
I=s®o (16) pulse parameters, always present in an iterative reconvolution
procedure, could be avoided. (Though the functional form of
the effective pulse can be measured, its exact width and “zero
The information on the kinetic and photophysical behavior time” should usually be fine-tuned when evaluating ultrafast
in a femtochemical experiment is contained in the undistorted kinetic data.)
functiono(t). To get this function from the detected (convolved) The aim of this paper is to discuskrect, model-free(and
signali(t), the spread functios(t) should be known and the  hencenonparametriy deconvolution methods, so we do not deal
integral eq (16) should be solved. This procedure yielding the further with those mentioned above. In a direct deconvolution,
original o(t) function is called deconvolution. Equation (16) can the solution of the convolution eq (16) provides a reconstructed
also be used to determine the effective ps{te This procedure o(t) dataset from the measuréd) data so that
is called identification, but it is not the subject of this paper.

Deconvolution Methods

Moreover, as there are methods that enable direct experimental i=s®0 a7)
detection ofs(t) even for multiphoton excitation experimens,
identification is not of great importance in femtochemistry. Many direct deconvolution methods are described in the

There exist different groups of deconvolution methods used comprehensive monograph edited by Jandsddther useful
in treating laser photolysis data. The first widely used group reviews are the invited paper of Schafer etabr a more recent
can be calledecorvolution. Least-squares iterative reconvo- tutorial paper on several advanced methods in the field of image
lution is the most widely used versi§i! Strictly speaking, this  reconstructiort?
is not a deconvolution, but a least-squares fitting of a suitable Before describing particular methods that we have used
model function convolved with the effective pulse to the successfully to deconvolve femtochemical data, we would like
measured (convolved)t) data, thus estimating kinetic and to point out some major difficulties in the reconstruction of the
photophysical parameters. Once the parameters are known, theindistorted functioro(t). One of the problems is that of the
(nonconvolved)(t) function can also be reconstructed. Some- uniqueness of solution of the integral eq (16). Suppose that the
what similar is the method of moments (another parameter solutiond(t) is not unique in the sense that we can find other
estimation method), which only works for multiexponential solutions of the form
decay models, being inferior to the least-squares method that
can treat any kinetic model. Other iterative methods based on o(t) = o(t) + w(t) (18)
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wherew(t) is the part ofd(t) which makes the originab(t) whered®+1) is the next approximation with respect@¥ and
become a spurious function. If there exist some functisfty A is called therelaxation factor In a linear iteration method,
that fulfill the condition should be independent ofs, 8, andt. In the “classical” van
Cittert methodA = 1, and the first approximatio®® = i.1 As
fizs(‘[ —tHwt)dt=0 (19) the iteration proceeds, the correction term becomes smaller, and

convergency to the true objeotcan be achieved. However,

or, in other words, whose convolution with the spread function van Cittert's method also amplifies noise with each iteration

S(t) is zero, thenw(t) can be summed with the real object Step and leads to ever increasing spurious fluctuations in the

functiono(t) to give a valid solutiord(t). As we shall see later, ~ solutiond, similarly to other linear me_thods3 thus_ never leading

Spurious Components in the SOIUtlé(t) often appear. to convergency. We shall show nonlinear iterations in the next
Another problem is encountered due to experimental errors Section that efficiently treat this problem. _

in the form of noise which adds to the “true” value of the There is another obvious possibility to treat deconvolution,

measured(t) function, so that namely, digital filtering. Anonrecursie digital filter is defined
by a convolution similar to eq (2¥)Accordingly, we can say
i(t) = iy,dt) + n(t) (20) that the measured functidnis obtained by digitally filtering

the objecib with the spread functioa The procedure of getting

The problem of noise is also a severe limitation on the back the object is callednverse filtering which is more
solution of the convolution equation. For details see the convenient to treat in the frequency domain, using the Fourier
discussion of egs (26) and (27). transformsF(v) of the respective time domain functiofi).

(a) Linear Deconvolution Methods.A deconvolution method According to the convolution theorefd, eq (16) that
is called linear if it includes only linear operations on the input describes the distortion can be written in the frequency domain
datai(t) ands(t). Though linear methods are not really effective as
to deconvolve femtosecond kinetic data, it is worth treating them
as they offer an easy formal description of the deconvolution I(v) = ) O(v) (24)

roblem. In practice, kinetic measurements provide sampled . L .
P P P b where v is the frequency (per unit time)® Obviously, as

quantized data of thét) function, i.e., a finite set of data lution (i.e.. diaital filtering) b ol ltiplicati
truncated numerically to some decimal digits. To describe these CONvoution (Le., digital filtering) becomes simple multiplication

data, we can rewrite the convolution eq (16) in discrete form: in the frequency domain, we can readily get the inverse filtered
' " result

in= —m©m 21
i ;% 0 (21) O(v)=$

where 15v) is the searched-for inverse filter. The procedure
of inverse filtering to get the object is in principle straight-
forward. We should Fourier transform both the measured image

1(v) (25)

where the limits ofm comprise the entire range whesdas a
nonzero value. The values aofare those for which measured
data are available. We can rewrite this equation in matrix

formuilation: functioni and the spread functiog divide the transform of
i =So (22) the first with that of the second, and inverse Fourier transform
the resultO(v) to geto(t): in principle, but not in practice. As
wherei ando are column vectors dfl elements, an&is an the reader might have noticed, inverse filtering as described here

N x N square matrix. In practic®y is usually the length of the 5 also a linear transformation of the measurédnction, so
in dataset, as the length of nonzero elements ofthgedatais e can expect the usual spurious fluctuations and noise
less tharN. The elements of th& matrix ares,m = sh-m within amplification in the solutiord. As we shall see later, these
the range of the spread function, and zero outside. From thefjyctuations become many orders of magnitude larger than the
time-independent shift property of tiesfunction we can find  functiono itself. This is due to the fact that the slowly varying
out that theS matrix should have a special property; each row spread function has nonzero components only close=00,
is the same as the row above, except that it is (circularly) shifted so applying the inverse filtering according to eq (25) means
one .element to the r|ght Such a matrix is called a Toeplitz d|v|d|ng at h|gher frequencies Virtua"y by Zero, |arge|y amp"fy-
matrix. ing the high-frequency noise.

Obviously, eq (22) represents a set of linear equations with  However, digital filtering in the frequency domain makes it

the UnknoWnS)m, and we should be able to obtain the solution easy both to describe and to treat the effect of noise. We can
by simply inverting the matri3. However, the special structure  rewrite eq (20) as

of the Toeplitz matrix makes the solution extremely sensitive

even to slight numerical imprecision, as its rows are almost 1(v) = lyudv) + N(v) (26)

identical. When calculating the inverse, very small differences

of large numbers should be handled. Even if the inverse can be Inverse filtering ofl(v) then becomes

calculated with robust iterative methods, the solufabtained

contains large spurious fluctuations as a consequence of the lrue(¥) i N(v)

experimental noise in thievector. Sv) | S)
Iterative solutions of eq (22) are promising to suppress the

spurious fluctuations and noise amplification, as they could be  As the measured optical density in kinetics is usually a slowly

controlled during the iterative process. Iteration is a recurrent varying function (even more so after convolution with the

OWw) = (27)

approximation of the solution that can be written as effective pulse), it has nonzero values mostly close to zero
frequency. The noise content of the measured data typically has
ok = o + A, — zSn_még?) (23) high-frequency components as well, which means that the high-
m frequency part of the solutio®(v) is dominated by the noise.
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Division of the nonzerd\(v) values at higher frequencies by In the case of a transietdOD, we may use aemifinite support
S(v)—where this latter has virtually zero values, as mentioned constraint, which means that we always&¥(t) values to zero

before—further enhances the noise conten{gf). This is the if t < t1, the onset time of excitation in the instantaneous kinetic
origin of the discouraging result of simple inverse filtering, that response. However, if we do not know the exact zero delay
the amplitude of noise in the inverse Fourier transfdi(t) between the pump and the probe pulses, application of this
largely exceeds the amplitude of the signal itself. constraint might not be useful. Tip®sitivity constraintis also

Analysis of eq (27) also offers the clue to get rid of the applicable if there is no bleaching present in the meast@D,
amplified noise. All we have to do, at least in principle, is to Or if we measure a transient fluorescence signal. This constraint
“cut” the high frequencies dd(v) before inverse transformation ~ forces the amplitude of th&(t) function to remain always non-
so that we get rid of the amplified noise, but keep the low- negative.
frequency part that contains the information necessary to Constraints on amplitude may be implemented also in the
reconstrucH(t) the most closely resembling the true object. If relaxation factor. An elegant and rather effective formulation
such a low-pass filter is a linear filter only, the overall procedure is the relaxation proposed by Jans$dris version of the
is still a linear transformation. The success of getting rid of the nonlinear iterative method in a discrete implementation can be
noise this way depends on the extent of overlapping of the written as
lrue(v) and theN(v) functions. If nonzero amplitudes of the two
functions occur in distinct frequency regions, noise filtering can ol =¥ + re"i. — zsn_mﬁﬂ?] (29)
be very efficient. If the two regions overlap, there is a trade-off m
between noise reduction and object distortion. In this case,
additional noise filtering can be used simultaneously with inverse  The relaxation function(6®) is defined to respect the (a priori
filtering. Filter parameters are then optimized to get the optimal known) boundaries of the object functiondlfi, is the minimum
deconvolution result. and Omax is the maximum of the physically acceptable values,

Effective noise filtering can also be done in the time domain then a general expression for the relaxation function can be given
in some form of “smoothing” the experimentaldataset prior as
to deconvolution. This can be done with a wide variety of
filters,®417 but they should be applied with caution, as they
typically distort the true object function as well. A safe method
that works well without distortion is the so-calledblurring
procedure proposed by Kawata et?%!In this procedure, both
spread and image are convolved with the inverted time-scale
spread functiors(—t). Following this, the starting image will
be the correlatiors(—t) ® i(t), and the spread function used in
the deconvolution will be the autocorrelatisf+-t) ® s(t). The

2r, a0 Opin T 0

2

max]

ro®) =r,— 3 (30)

max min

(Note that the original formula of Jansdgéns different; it is
valid only if dmin equals zero an@imaxis positive, while eq (30)
does not require these conditions.) This function is trigonally
shaped, with its maximumy in the middle of the intervaléqin;

- EE e : ) Omay), decreasing linearly with the distance from the maximum.
noise in the measured) is largely reduced by this smoothing, |t has zero values (no correction) at the boundaries, and becomes
resulting also in an effective damping of the spurious fluctua- negative outside the physically acceptable interval. Its effect
tions in the solutiord(f), but the number of iterations necessary ring the iterative procedure is to apply a negative correction
to obtain convergency is much higher after reblurring. To it e ampiification of noise resulted in physically nonacceptable
overcome this problem, a variable convergence speed methody,i, physical boundaries are often easy to fix, especially in
has also been proposé&dHowever, the increased computational spectroscopy. Transmittance data, for example, should lie

requirement_does not lead to inconvenience nowadays, due t0,anveen 0 and 1. The method is clearly superior to simple
recently available high-speed processors. “clipping” at the boundaries. This can easily be shown at the
(b) Constrained Nonlinear Deconvolution Methods.Ap- zero limit. If we simply clip negative values to zero, according
pearance of spurious components and noise amplification canto eq (28), they should remain zero during further iteration, while
easily result in complete failure of the reconstruction of the the more flexible Jansson algorithm allows subsequent relaxation
object function, or in its heavy distortion. We can greatly from zero values.
improve the result of reconstruction if we make use of our prior ~ Another group of iterative methods uses multiplicative
knowledge of the object function. If we know the functional corrections instead of additive ones. The method has been first

form except for a few parameters, a least-squares estimate ofproposed by Gold* The iteration equation can be written as
those parameters with the help of the convolved function usually

results in a completely smooth function. Even if we do not know i
the kinetic model function, when measuring physical signals, ok =l — (31)
we usually know some useful properties of the measured AK)

functions a priori, which properties can easily be implemented Zsh—m"m
in iterative procedures. To include constraints and nonlinearity
in the iteration eq (23), we can write'®

m

If both sandi are positivep® cannot become negative during
this iteration. Obviously, the multiplicative correction term

ok =col + 1 —s® c oY) (28) i/(s ® 6®) goes to unity if convergency is obtained. It is
interesting to note that Gold’s ratio method can be considered
whereC is a constraint operator, ariddmay be dependent an as Jansson's method using the special relaxation function

0, ort. In femtosecond kinetic applications, we can use several r[6®] = 60/(s® 6®).25 Note that, in addition to the dependence
constraints. As already mentioned in connection with egs (9) on the value ofé® in the Jansson method, this relaxation
and (10), a transiemxOD should be zero prior to excitation. If ~ function also depends on the iteration numlkerAnother

nonzero elements of the object function are confined within  interesting and efficient multiplicative correction has been
andty, it is called afinite extent” or finite support® constraint. developed inspired by the Bayesian method of probability
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calculatior?® hence it is usually called Bayesian deconvolufibn.
(Note that some authors also call it as Richardsoncy
method.) This iteration procedure can be written as

(32)

In fact, this is an enhanced noise suppression method, wher
the simple Gold’s correction term is filtered with the reverse
time-scale spread functiai—t), though the number of iterations

increases substantially. This iteration also guarantees the
conservation of positive values. There is also a direct use of

the Bayesian estimation method in deconvolution if the object
function can be interpreted as a probability distribution, which
is typically not the case in femtochemistry.

A quantitative comparison of time domain iterative decon-

J. Phys. Chem. A, Vol. 110, No. 19, 2006197

(16) of ref 9. We have calculated three different kinetic curves
(representing three detection wavelengths with differersiues

of the individual species). The time series ADD values
obtained this way were convolved with a 255 fs fwhm Gaussian
spread function and sampled at 30 fs intervals. To mimic
experimental error, a random number was added to each sampled
value, generated with a normal distribution. The mean of the
distribution was set at zero and its variance at 2% of the
maximum of the convolved data set, which is equivalent to an
RMS error of —34 dB. The resulting raw data can be seen in

eFigure 1 of ref 10. They were used as the inpyti2, andi3

with each deconvolution method, along with the error-free
spread function sampled at the same time intervals.

Iterative model-free deconvolution methods were imple-
mented as given above. Than Cittert linear iteratve method
has been tested only for comparison to see the degree of
improvement when switching from a linear to a nonlinear

iteration. As zeroth approximation we uséﬁo) in, the

volution methods used in spectrometry and chromatography hasconvolved (image) data sdterative Bayesian decamlution

found Jansson’s method the best performing Srkhere is an

interesting study on the application of nonparametric deconvo-

lution methods to differential calorimetric results at a scale of
a few second?’ This kinetically motivated work concludes that

is computationally more demanding due to the double convolu-
tion included in each iteration step. As this method is sensitive
to zero or near-zero values in the initial dataiget “baseline

correction” is needed if there is bleaching present or if

constrained iterative methods with subsequent noise filtering €xperimental noise results in negative values ofitet. This

give the most suitable results.

As we have already pointed out, the application of noise
filtering in addition to inverse filtering may also provide
nonlinear corrections of the digital filtering results. To filter

can be done by adding a positive constano i, so that (y +
a) > 0 for all n. Once the Bayesian deconvolution is done, the
same constant can be subtracted from the resufiindata.
Obviously, this treatment introduces some distortion of decon-

single photon counting measurements, a Fourier-spectrumVvolution results.Jansson’s methodhas been used with the
continuation has been developed taking into account errors formrelaxation function given in eq (30), where there is a need for

a Poissonian distributio#. Another method is based on an
evenly distributed error (white noise) in the entire frequency
domain and uses an adaptive Wiener fiffet? Adaptive filtering

is a promising field to harness inverse filtering to get reasonably

the minimum and maximum of the true solutiop, which is

not easy to know prior to deconvolution. Even in the case of
no bleaching or fluorescence detection, only the zero minimum
is known, not the maximum. To get the extrema of the true

noiseless deconvolved ultrafast kinetic datasets without spuriousobject function, we made a Bayesian deconvolution where you

fluctuations. Regularization is another possibility to “force” the

do not need those two parameters, then started a new Jansson

inverse filtered object function to have some prescribed proper- deconvolution using the upper and lower boundary limits thus

ties 3334
It is worth mentioning a comparative study of six different
deconvolution techniques by Madden et®8kyhere the reader

obtained.Gold’s ratio method should certainly provide more
noisy results than the Bayesian method that has an additional
smoothing in each iteration step. It was included in the present

can find a numerical analysis of some specific methods used toStudy to show exactly this improvement when the computa-
deconvolve pharmacokinetic drug response functions. However, tionally more demanding Bayesian method is used.

these methods apply either an implicit model function (e.g.,
cubic splines) or an interpolation of the original experimental

Inverse filteringmethods are based on Fourier and inverse
Fourier transforms. Though the popular FFT method is also

data to a substantially increased grid size compared to theappropriate to use when calculating forward or inverse trans-
number of measured points. Though there are several distinctforms, we usually get better results with the direct discrete
curve shapes considered, all of them are periodical starting fromFourier transform (DFT) and its inverse transform if the number
and ending at zero values. Consequently, results of this studyof dataN does not match exactly a power of 2. This is probably
do not have a great relevance to the deconvolution of ultrafastdue to the fact that padding the dataset with zeros (or other

laser kinetics data.

Numerical Tests of the Implemented Deconvolution
Methods

After having tried several deconvolution procedures, we have
chosen to thoroughly test the applicability of those that could

be successfully used in the deconvolution of femtosecond kinetic

arbitrary values) to\ = 2€ when using FFT usually results in

a distortion of the transform. With recent computers, DFT
calculations up to a few hundred data can be carried out within
reasonable time. Implementing the DFT algorithm, we applied
no normalization in the forward, and a normalizationNbythe
length of the data set) in the inverse transformation, as given
in egs (5) and (6) in ref 10.

data. For the test purposes, we have used synthetic data, AS We have pointed out before, simple inverse filtering
calculated on the basis of the simple consecutive mechanismenormously amplifies high-frequency noise, so this method

(33)

with the initial conditions [A]= 1 mol/dn®, [B] = [C] =0 at
t = 0. The resulting kinetic response function is given in eq

cannot be applied without effectively filtering out this noise.
We have tried four different filtering methods. One was
prefiltering the i(t) dataset using the reblurring procedure
described above. Another method was the use of a simple low-
pass filter, i.e., cutting the Fourier transfofrabove a threshold
frequencyf, prior to inverse transformation. Neither of these
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filters gave satisfactory results. AViener filter is more also to reduce experimental noise, but the effect of the constant
sophisticated, which minimizes the sum of squared differences error power|N|2 is modified when divided by the frequency-
between the original functiohand the inverse Fourier transform  dependent image powgi2. The smaller the power of the image

of F, denoted byf. As the originalf function is not known, (i.e., the higher the frequency), the greater the smoothing effect
approximations for the optimal Wiener filter are usually used. as well, in addition to the regularizing effect. The teyih |2 in

A critical study of different formulations of the Wiener filter  the regularization filter is similar in that its smoothing effect
and their applicability to radioactive indicator-dilution data is increases with increasing frequency, but in this case indepen-
described by Bate®.In the case of a white noise, where the dently of the image power.

noise amplitude is the same constahat each frequency, the There is an additional problem with the Fourier transformation
Wiener filter can be implemented in the following approximated of femtosecond kinetic data: many measured datasets are
form:2:3t nonperiodic, as can be seen from Figures 2, 4, and 7. This
nonperiodic nature makes the Fourier transforms have virtual

A [l |2 1 high-frequency components, as the difference from zero at the

O=—"—l2 (34) ) L E :

> IN| end of the_ data sets means a qllscontlnuny in a circular

H=+—; transformation, which generates high-frequency components

IS characteristic of steplike functions. These extra frequencies

further increase spurious fluctuations in the deconvolved result,
so they should be treated prior to deconvolution. There are
methods described in the literature to avoid this problem in
different ways. We have used the method proposed by Gans
and Nahma#' by subtracting the shifted data from the original
dataset to give a strictly periodic, finite support sequence. This
results in a well-behaved Fourier transform, but provides twice
the number of data in the frequency domain. However, due to
double sampling of the time-domain data, every other item in
the frequency-domain dataset is zero, which can be omitted if
we plot an amplitude spectrum. As a result, we get the discrete
Fourier transform of the unmodified dataset but without the high-
IS* . )
. (35) frequency components that would appear if not performing the
IS”+ 4+ yIL| transformation to a periodic sequence. It should be noted that
other proposed methods to treat steplike functions prior to
Here, Fourier transformation are equivalent to the GaNshman
methods38
IL())? =16 sin“(ﬂ) (36) The object functiond, obtained with each deconvolution

v method mentioned above were analyzed the following way.
Using the least-squares iterative parameter estimation of Mar-
is the square of the absolute value of the Fourier transform of quard§9 for all three datasets simultaneously, the parameters
the second-order backward differential opera®¥means the  of the model function and their standard deviations were

This filter, called adaptie pseudo-Wiener filterhas been
successfully used to deconvolve radioactive indicator-dilution
response curves by Gobbel and Fikekinally, we also tried
the two-parameter regularization filteproposed by Dalxzi
and Kolla.2* Its simpler versions with only one additive constant
in the denominator (the equivalent #f are widely used, as
was proposed, e.g., by Parruck eB@lmplementation of this
filter was similar to that of the Wiener filter; the inverse filtered
result was multiplied by this filter, giving the Fourier transform
of the object as

O=

S

complex conjugate of the frequency-domain funci®@ndvs determined. On the basis of these values, the 95% confidence
is the sampling frequency, which can be calculated from the interval was calculated for each paraméferConfidence
equidistant sampling timé\t as 1At. This filtering avoids intervals calculated this way were compared to the least-squares

division by zero wher¢S? becomes practically zero, with the jterative reconvolution results obtained from fif§ data with
addition of the constarnit and the frequency-dependent correc- the convolved model function. As the reconvolution procedure
tion y|L|? to the denominator. Regularization has been applied contained all information except for the parameters concerning
to isothermal DSC data by Pananakis and ABelsing the  the object function during deconvolution, parameters obtained
equivalent of eq (35) witly = 0, i.e., a one-parameter only  this way represent the best available estimates. In addition,
regularization filter. various overall statistics and Fourier transform properties were
It is interesting to compare the last two filters. For a better a|so calculated. Fourier transforms can help to check the noise
comparison, let us multiply both the numerator and denominator content of the measured data and follow the extent of noise

of eq (34) byS*|l|? to get reduction during deconvolution. To this end, we show some
amplitude spectra in the frequency domain of the measured and
o=_ I8 37) restored datasets.
IS2 + M As for testing purposes we use synthetic data, so we are in a
|||2 position to calculate the mean square error (MSE) of the

deconvolution for the object function defined as

Comparing egs (35) and (37) we see that singularities in both
filters are avoided by additional terms|&? in the denominator,
thus providing regularization of the deconvolution. In this
respect, Wiener filtering can also be considered as a special
case of regularization. However, the three different additive
terms have different “side effects” in addition to avoiding
singularities. The constaitsmoothes also the signal itself, thus
reducing eventual experimental noise independently of the We also calculate a similar statistics using the sum of squares
frequency. The role of the terfiN|2/ |I|2 in the Wiener filter is of differences between the reconvolved results and the original

(38)
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Figure 2. Datasets obtained with optimal Bayesian deconvolution from the simulated measured data i@n{ay®econvolution of the original
image. (b) Deconvolution of the reblurred image. Circles are the results of the deconvolution. The continuous curves show the image, and short-
dashed curves indicate the original (noise-free) object function, while the long-dashed curve in panel b shows the reblurred image. Note the noise-
reducing effect of the reblurring procedure.

image function defined as

Z[(O ® S —
MSE page= (39)

This latter can be calculated also in case of a measiyred
dataset, when we do not know the true object function. Another 58
indication of the quality of the deconvolved datg is the t
oscillation index proposed by Gobbel and Fi&.This index 0.2+
shows the extra oscillation with respect to a smooth unimodal . i : . : . : i .
function increasing monotonically frof to Opeax and decreas- 0 100 200 300 400
ing monotonically fromdpeax to On. Number of iterations

(a) Test Results. When testing iterative methods, we 'Tigutr'e 3. fDiffeB(ent thifgum Cfit(lafit? as fatgund_iqlg a?ftthe tnl;\mber of
monitored the mean-square errors M§&:and MSEnage and lterations or a bayesian deconvoiution of the origmaialaset. Arrows
the oscillation index OSC and fi_tted t_he model functi_or_1 to the yn'ézgttiza}go;egérgsb:rgf'&%ﬁ%}&etﬁgr{tﬁgﬁgr‘? |23nr32:@a. Note the
deconvolved curves after each iteration step. The minimum of
the mean-square errors or the minimal residual error in the fit summarizes parameters thus obtained from the fit. As can be
was considered as an optimum for the deconvolution. When seen from the table, the best-performing method is Bayesian
using the van Cittert or Gold methods, after a slight decrease iteration of the reblurred image data.
during two to four steps, there was a monotonic increase of the  To show the quality of deconvolution, two examples can be
errors indicating an ever increasing noise in the deconvolved seen in Figure 2. Figure 3 shows the existence of optima during
data sets, while there were marked minima in the case of thethe iterative procedure. The oscillation index OSC of the
Jansson and the Bayesian methods of Mgkand the residual deconvolved data increased monotonically (not shown in Figure
error in the fit. Though the two minima usually did not coincide, 3), due to the monotonically increasing amplified noise.
they did not differ much either. (As an example, it was at 58  Testing inverse filtering methods, we have used a similar
iteration steps for MSggjectand 63 steps for the residual error  optimization strategy as with time-domain iterative methods.
in the fit when deconvolving the functidA using the Bayesian ~ The only difference was that, in this case, OSC, MR&
method. Cf. Figure 3.) However, there was not any minimum MSEmage and the residual error in the fit were monitored as a
in either the MSkageerror or the oscillation index OSC during ~ function of the filter parameter(s). According to our results,
iteration with any methods that would have provided reasonable preliminary noise filtering using reblurring does not help to
deconvolved data. In some cases, there appeared extrema ieliminate the enormous noise amplification during the inverse
OSC but the minima never indicated reasonable deconvolutionfiltering procedure if we do not apply additional filters. Though
results either, and occurred prior to the optimal iteration number the simple low-pass filter helps reducing this noise to a large
found based on the MSEecOr residual fit. Fitted parameters  degree, it still introduces relatively large spurious fluctuations
from the Bayes-deconvolved data set were quite reliable, while in the obtained deconvolved data set while still heavily distorting
those from the Jansson-deconvolved data set usually had todhe deconvolved signal shape. The Wiener filter and regulariza-
large errors. tion result in acceptable deconvolved data sets, so we explored

When deconvolving reblurred data sets, there were alwaysin detail only the use of these additional filters. The relevant
minima for the MSEyjec:and the residual error in the fit, and  parameter for the Wiener filter (eq (34)) is the noise pojét,
results obtained for fitted parameters were comparable in casewhile for the regularization filter, there are two parameters,
of all the methods. Both OSC and M@k have shown a  andA.
monotonic change with iteration number, so they cannot be used Before searching for optima in the two-parameter space, we
as optimum criteria. Considering all the parameters, it was also have used first a one-dimensional search also for the regulariza-
the Bayesian method which gave the best result. Table 1A) tion filter, setting eithery or A to zero. The upper limits of a

MSE / residual error

MSE.

image
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TABLE 1: Estimated Parameters Obtained When Fitting Model Function (33) to the Three Simulated Datasets Deconvolved
Using Different Deconvolution Methods and the Residual Error in the Fit as Optimum Criterion?

(A) Iterative Deconvolution in Time Domain

true Bayesian van Cittert Gold Jansson
parameters value Bayesian reblurred reblurred reblurred reblurred
1 0.20 0.19 (0.02) 0.19 (0.02) 0.22 (0.04) 0.20 (0.03) 0.20 (0.03)
71 0.50 0.49 (0.04) 0.50 (0.04) 0.46 (0.06) 0.48 (0.04) 0.49 (0.04)
& 30 28.9 (1.4) 29.4 (1.3) 26.4 (1.5) 28.0 (1.4) 28.0 (1.4)
eé 20 19.6 (1.3) 19.2(1.2) 20.1 (1.7) 19.7 (1.4) 19.8 (1.4)
Gi 5 3.5(1.6) 3.5(1.5) 5.0 (1.8) 4.0 (1.5) 3.2(1.6)
eé 45 45.7 (2.7) 45.2 (2.5) 47.9 (4.5) 46.5 (3.1) 45.9 (2.9)
eé 10 10.0 (0.3) 10.0 (0.3) 10.1 (0.3) 10.1(0.3) 10.0(0.3)
& 5 4.2 (1.4) 4.2 (1.4) 4.8 (1.6) 4.5(1.4) 5.2 (1.5)
& 30 30.5(2.1) 30.2(1.9) 32.1(3.3) 31.1(2.3) 30.1(2.2)
ég -10 —9.9(0.3) —9.9(0.3) —9.8(0.4) —9.8(0.3) —9.9(0.3)
(B) Inverse Filtering in Frequency Domain
true Wiener regularization
parameters value filter optimizedy optimizedi
T1 0.20 0.22 (0.04) 0.23 (0.04) 0.24 (0.05)
T2 0.50 0.45 (0.06) 0.45 (0.06) 0.44 (0.07)
gi 30 26.5 (1.5) 26.2 (1.5) 25.7 (1.5)
s 20 20.1 (1.7) 20.2 (1.7) 20.1 (1.8)
é 5 4.9 (1.8) 5.0 (1.8) 5.2(1.7)
€ 45 48.0 (4.6) 48.3 (4.8) 48.0 (5.4)
eé 10 10.1(0.3) 10.1(0.3) 9.9 (0.3)
fi 5 4.7 (1.7) 4.8 (1.6) 4.8 (1.6)
e?é 30 32.1(3.4) 32.4 (3.5) 32.2(3.9)
E?c’ -10 —-9.8(0.4) —-9.8(0.4) —9.6 (0.4)

a Characteristic times; andz, are given in ps units, while molar absorptivitiq‘sare given in driimol~* cm™%. Numbers in italics indicate a
systematic error in estimation. Bold nonitalic numbers are the best estimates. Bold italics indicate the best estimate but with a systematic error.
Headings indicate the actual deconvolution method. Numbers in parentheses show the half-widths of 95% confidence intervaISelcl\lmBe;that
set to zero and not treated as a fitted parameter.

subsequent 10& 100 division two-dimensional grid search the simple inverse filter with no additional noise filtering (i.e.,
were set to be somewhat higher as the optimal values obtainedy, 4, or |[N|2 parameters are set to zero), after a moderate initial
in one-parameter optimizations, while the lower limits were set amplification of the signal at low frequencies, the experimental
to zero. For the test functions studied here, we have found annoise becomes gradually more and more overamplified so that
interesting result: in all of the two-parameter optimizations, one high frequencies at the end of the spectrum have typically
of the parameters was found to be zero at the optimum. several thousand times greater amplitudes than in the original
Obviously, the other parameter was equal to the value obtainedundistorted signal. (Obviously, this leads to a time domain data
from the one-parameter optimization, so the two-parameter set with several orders of magnitude higher noise than the signal
regularization can be reduced to one-parameter regularizationitself.) As the relevant filter parameters are increased, this high-
in the case of the studied model functions. In the case of function frequency noise is gradually damped by the additional filter,
i1, two-parameter optimization was found at nonzgémaram- while the low-frequency amplification remains practically the
eter, withy = 0, while with the functions? andi® we have got same. The optimal filter parameter is that which effectively
the same optimay value as in the case of the one-parameter damps the high-frequency noise with no important distortion
y-optimization, withA = 0. Consequently, only test results of the low-frequency part, this latter containing most of the
obtained from one-parameter optimizations are given in Table information of the useful time-domain signal. To demonstrate
1B. Since the more demanding two-parameter regularization didthis effect of the additional noise filter, we show a few spectra
not provide better results with respect to the one-parameterat optimal noise filter parameters.
regularization, there is probably no need to use it in the case of In Figure 4b, we can see the frequency characteristics of
image functions similar to those tested here. different filters resulting in the deconvolved time-domain signals

Tracing the results of the grid search, there were marked shown in panel a. At about 2.5 THz, the Wiener filter has a
minima of MSEypjectand the residual error in the fit, which gave  sharp cutoff that reaches its highest value of about 20 thousand
only slightly different optimal values. However, there was not time damping at about 4.5 THz (apart from fluctuations), which
any minimum in either the MSkage error or the oscillation remains more or less constant till the end of the spectrum at
index during the optimization with any methods. After a sharp about 16 THz. Botly andA regularization filters have less sharp
initial decrease, the OSC curve shows a very shallow but and higher frequency cutoff characteristics; however, the
monotonic decrease with increasing filter parameter (cf. Figures frequency-dependentfilter has a steeper breakdown than the
2 and 3 of ref 9.), while the MSkageerror constantly increases.  frequency-independeitfilter, so it gradually catches up with

It is interesting to follow the Fourier transforms of different the Wiener filter curve to cut somewhat more from about 4 THz.
data sets during the optimization procedure. When applying only From here on, the damping of the Wiener filter is oscillating
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Figure 4. (a) Deconvolved data sets obtained with different inverse filters from the simulated measured data setYi@age)circles show the

results obtained with optimized regularization filteds @nd y-filtered results [att = 0.0179 andy = 0.244, respectively] are not discernible

visually at this scale). Smaller filled circles show the results obtained with an optimal Wiener filtéli{at 1.24 x 10 ~5]. The continuous curve

shows the image, and the short-dashed curve indicates the original (noise-free) object function. (b) Amplitude spectra of the deconvolved data sets
in panel a. Circles show spectra of the deconvolved data sets, each one marked with the corresponding filter name. The top thin solid curve shows,
for comparison, the spectrum of the simple inverse filtered result without any noise removal.
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Figure 5. Amplitude spectra of the deconvolved data sets obtained with Bayesian deconvolution from the simulated measureé (da@tsae

domain results in Figure 2). (a) Deconvolution of the original image. (b) Deconvolution of the reblurred image. Circles show spectra of theet&convolv
data sets, dotted curves indicate the original (noise-free) object function, and short-dashed curves indicate the measured signal, while the long-
dashed curve in panel b shows the spectrum of the reblurred image. The top thin solid curve shows, for comparison, the spectrum of the simple
inverse filtered result without any noise removal. Note the noise-reducing effect of the reblurring procedure.

between that of thé-filter and that of they-filter, depending blurred) image data. Obviously, the slight overamplification
on the actual noise of the measured data. Summing up we maybetween 3 and 4 THz is responsible for the minor extra
say that the Wiener filter reduces the low-frequency noise more oscillation at the end of the deconvolved curve in Figure 2a,
efficiently, and its damping at higher frequencies seems to but the reason for keeping the experimental noise of the image
“imitate” an optimum between the and they-filter, depending in the deconvolved data set is also this very small noise
on the experimental noise level. This behavior of the frequency suppression. In panel b of Figure 5 we see an important cut
spectra is quite similar for the deconvolution results of the other starting at~3 THz and increasing down to more than a 100
two data sets! andi? times damping of the high frequencies. This frequency behavior
Model parameters obtained when estimating from the inverse is responsible for the efficient filtering of the experimental noise
filtered deconvolved data sets are shown in Table 1B. It can bein the resulting time-domain data set (cf. Figure 2b).
seen that the errors of the characteristic times are greater than Frequency characteristics of the van Cittert, Gold, and Jansson
those obtained from the Bayesian iteration results, but many iterative deconvolution results show that the high-frequency
absorptivity parameter errors are comparable to those obtaineddamping effect is substantially less if using these methods than
from iterative results. The overall performance of the Wiener with the Bayesian deconvolution. It is not surprising that the
filter is the best, though there is not much difference between Jansson method works well in spectroscopy and chromatogra-
regularization filtered and Wiener filtered results in the time phy; it enhances efficiently the high-frequency components as
domain, as it is expected from the above considerations of thethe iteration proceeds, thus efficiently increasing even small
frequency spectra. peaks. However, most of the femtosecond kinetic data do not
The frequency-domain behavior suggests a similar analysis contain several small peaks, rather one shallower “bump”, so
of the time-domain iteration results as well. As an example, in the gradual amplification of smaller features by the Jansson
Figure 5 we show amplitude spectra of the Bayesian deconvo-method is not desirable in this case, but it is responsible for the
lution results obtained from the image functidr(cf. Figure 2 greater errors obtained for parameters estimated from the
to see corresponding time-domain results). It is worth noting Jansson-deconvolved data. Even so, Jansson deconvolution can
the minimal suppression of the high frequencies in panel a, in be useful if there is a need for a steep initial rise but also for an
the case of the Bayesian deconvolution of the original (nonre- efficient suppression of too high a peak resulting from this rise,
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Figure 6. Upper two panels: 95% confidence intervals in percentage relative to the parameter value (relative errors) for the two time constants
71 andr; in eq (33) obtained from a global fit to three deconvolved data sets resulting from different deconvolution methods. Methods are identified
by the text written aside the corresponding error bars. The top bar in each frame marked “reconvolved” was obtained with a reconvolution procedure,
representing the estimate obtained using the proper model function. Lower two panels: Relative errors for two molar absorptivity coéfﬁcients.
(reactant) was obtained with the greatest, wbﬂe{transient) with the smallest systematic error.

as this method efficiently avoids a rise above the prescribed that a nonparametric deconvolution results in a deconvolved
maximum. Reshaping the original triangular relaxation function data set obtained independently from the kinetic/photophysical
can also help to get more suitable deconvolution results with model, thus the “fine-tuning” of the pulse parameters (zero time
the Jansson method (see e.g. figure 8). and exact width) does not correlate with the model parameters.
(b) Recommendations.On the basis of the test results Bayesian deconvolution of the reblurred data gives the most
described above, we can derive some principles to be followed remarkable results in this respect; parameters obtained from
when trying to deconvolve femtosecond kinetic data without these data are always much less distorted than those from the
any chemical and/or photophysical model. To help the com- reconvolved results. It should also be noted that the statistical
parison of different methods, we visualize in Figure 6 some error is of course greater (about twice as large) with respect to
results obtained with different deconvolution methods tested, the reconvolution results, but this is normal as the information
showing estimated parameter values (central dots) and theircontent of the true model is not used at all when deconvolving
relative errors _(bars) as 95% confidence intervals ir_] percentageithout any model. However, the systematic error of the
of the respective estimated values. The top bar is the resultggiimated value (the distance of the central dot from zero) is
obtalned from reconvolutlon, l.e., when fitting the known model often less than that of the reconvolved result, and never really
functlon (33), cqnvolved with the known effective pulse, to Fhe reater. Bayes deconvolution (both of the original and the
image data. This result represents the best available estimat eblurred image) gives a nondistorted result even for the most
of the parameters, as the fitting procedure makes use of the . ot wh Il oth thods fail. includi
complete knowledge of the true model, except for the actual distorted p_aramet » where all other methods fall, including
values of its parameters. The vertical lines in the diagrams reconvolution.
indicate zero error, i.e., no systematic distortion of the parameter. On the basis of these findings we can recommend a
From the data shown in Figure 6, we can easily see the statisticalnonparametric deconvolution and subsequent parameter estima-
precision of the estimated parameters (bar size), and thetion from fitting the model function to the deconvolved data
systematic distortion (relative position of the dots and the bars set even in the case if the model function is known from other
with respect to the zero line). experimental evidence than the ultrafast kinetic measurements
A striking feature of the diagrams is that several methods, used to determine kinetic and photophysical parameters. Though
mostly time-domain iterations of the reblurred data sets, provide statistical errors can be up to twice as much as estimated with
less systematic error than reconvolution. This is due to the fact a reconvolution procedure, markedly smaller systematic distor-
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tions can be expected with this method. If we are not certain of
a physical model a priori and want to select the most suitable
one based on the evaluation of the femtosecond kinetic data,
nonparametric deconvolution efficiently helps to avoid unneces-
sary correlation of the fine-tuned pulse parameters with the
model parameters, thus facilitating the choice between concur-
rent models.

Another interesting feature is that the results obtained with a
Wiener noise filter are always very much the same as those
obtained with the van Cittert iteration of the reblurred data. Both
the van Cittert and the inverse filtering methods are linear
deconvolution methods, so the explanation should be that
reblurring in the time domain has probably the same noise- 2 o 2 4 & & 1o
reducing properties as a Wiener filter in the frequency domain. delay / ps
Observing the respective error bars, we can also state that the-igure 7. Experimental ultrafast kinetic curves deconvolved in this
Wiener filter has somewhat less systematic distortion than the Study, as measured by Barthel et®#Excitation/detection wavelengths
regularization filters. This observation supports thtthere shc_;wn_ldennfy individual curves. _Clrcles denote measured_ data, and
. . . solid lines represent the best fit of the model as estimated by
is apparently no “fine structure” present in the measured data o.onyolution from these three data sets. All data are normalized to
but it contains rather a simple “bump'a Wiener noise filteris  ynjt amplitude between their highest and lowest values.
the method of choice if inverse filtering is used for deconvo-
lution. However, if there are also smaller peaklike features to e can also plot the Fourier spectrum of the known undistorted
be suspected in the deconvolved curve, regularization, especiallyfynction o. Whenever the amplitude of the deconvolved
frequency-independentregularization, might be a better choice,  spectrum exceeds that of the monotonically decreasing undis-
even if it provides somewhat larger statistical errors in the torted functiono, the excess amplitude only enhances noise in
parameters? the deconvolved data set. On the basis of this fact we should

A similar recommendation can be formulated for the time- check for the onset of increasing noise tendency even if the
domain iterative methods. Bayesian deconvolution has by far undistorted functioro cannot be seen on the spectra, and stop
the best statistical properties from the point of view of both a the iteration or the decrease of the filter parameter (see Figure
small systematic distortion and a narrow confidence interval 3). Properties of this graphically observed optimum are discussed
due to the efficient smoothing effect of this method. However, in more detail in ref 10.
if smaller peaks or a less smooth behavior with very steep a A computer program is also available as Supporting Informa-
rise at early times are suspected, Jansson deconvolution of thdion to this paper which facilitates graphical deconvolution via
reblurred image might give more satisfactory results. Van Cittert inverse filtering. It shows both time-domain and frequency-
and Gold iterative methods do not have any advantages withdomain behavior of the relevant functions while changing filter
respect to the above-mentioned two iterative methods, so theirparameters. The effect of choosing a Fourier transform method
use in practical applications is not recommended. It should be in the case of steplike functions can also be observed using the
noted that Bayesian deconvolution can only be applied to a non-program.
negative dataset, so the baseline-correction mentioned in
describing the numerical implementation should be always usedDeconvolution of Real-Life Experimental Data
if necessary. Varying the baseline correction used, we have Rea| experimental data might differ much from those
observed that the smallest distortion occurs if the smallest cgicylated on the basis of the simple two-step model used to
possible baseline correction is applied. test the applicability of deconvolution procedures. We have

A few words should be added also on the optimization chosen a considerably complex phenomenon, the CTTS (charge
procedure if the methods are applied to real experimental data.transfer to the solvent) of the sodide ionNabserved in THF
In this case not only the model, but also the original, undistorted (tetrahydrofurane) solution to deconvolve with the above-
data set is unknown. While it is easy to use statistics derived described nonparametric methods. The original data along with
from the undistorted signal to find optimal iteration numbers a reconvolution analysis using a quite sophisticated model is
or filter parameters, when only the convolved image function described at length in a previous paptEigure 7 shows the
measured in an experiment is known, there are no statisticsthree experimental curves chosen here to deconvolve, all
available which would indicate optimal deconvolution. As we normalized to unit amplitude between their highest and lowest
have shown in the previous chapter, both M@k and the values. The choice of three substantially different shapes makes
oscillation index OSC have a monotonic behavior as a function it possible to estimate the parameters of the reported kinetic
of the relevant filter parameters. Though the existence of an model, consequently, a comparison of the quality of inference
optimum is well established on the basis of the results found from nonparametric deconvolution with respect to reconvolution.
for the case of known object functions, which certainly holds (Note that we have kept the parameters of the shifting spectrum
for experimental data of similar shape, there is no numerical of the neutral N& species, formed when the electron gets
optimum criterion if the true model function is unknown. detached from the Naion, as published in ref 40, for measured
However, on the basis of the frequency-domain characteristicsdata at three wavelengths only are not sufficient to estimate
of different data sets compared to the deconvolved data, a fairlythem with a reasonable precision.)
good estimate of the optimal deconvolution can be chosen. As We performed iterative Bayesian and Jansson deconvolution,
it can be seen in Figures 4 and 5, optimally deconvolved data and inverse filtering with additional Wiener or regularization
have a frequency spectrum whose amplitude never turns fromnoise filtering on all three curves. In addition to the near-optimal
a decreasing tendency into an increase. This is supported bydeconvolutions found using the above-described graphical
the figures showing deconvolution results of synthetic data, as observation of the noise behavior, we checked slightly under-

amplitude
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Figure 8. Experimental ultrafast kinetic curves detected at 1150 nm, deconvolved with a Bayesian and a Jansson method of the reblurred data set.
The double quadrangular shape of the relaxation function used with the Jansson method (long dashed gray curve) is also shown in panel a. Amplitude
spectra of the respective curves are shown in panel b.

filtered and slightly overfiltered results as well, to see the quality
of the chosen optima. This checking of the results was done by
fitting the reported model function simultaneously to the three
deconvolved data sets and comparing the statistics of the
parameters estimated from the fit. We have used the Marquardt
method of nonlinear estimatid¥, similarly to the case of
simulated data.

It was found in each case that the underfiltered (when
performing time-domain iterative deconvolution, this corre-
sponds to the case of too high iteration numbers) as well as the
overfiltered object reconstructions gave statistical results inferior
to those found optimal based on the graphical observation of
the frequency-domain behavior. This is in accordance with the I T i T T
findings reported in ref 10 that graphical observation is a robust

amplitude

8 10

delay / ps

method ,Of optlmal deconvolution. Underfiltered data set.s Figure 9. Deconvolved experimental data. Excitation/detection wave-
resulted in considerably larger errors of the parameters, while |engths shown identify individual curves (cf. Figure 7). Circles denote
overfiltered data sets had usually worse statistics indicating measured data; solid lines represent deconvolved data sets obtained
systematic error in the fit. with Jansson time-domain iterative deconvolution using relaxation

However’ there were dlfferences |n th|s case Wlth respect to functions similar to that of FIgUI’e 8. All data are normalized to unit

the simulated data. As it can be seen in Figure 8, Bayesian 2MPlitude between their highest and lowest values.

deconvolution results in a reconstructed object function that
obviously does not have a steep enough initial rise. We have
found that, with a suitable “shaping” of the relaxation function
using Jansson deconvolution, we can achieve a more satisfactor
result than with the Bayesian method. The relevant relaxation |

function of Figure 8 has a double quadrangular shape. We cantMes-

see that there is no amplification (zero relaxation factor) at Inverse filtering also provides quite reliable results compared
exactly zero signal amplitude, but it increases very sharply to to that of the Bayesian or Jansson deconvolution. The quality
become 0.86 already atOD = 0.3, resulting in a largely ~ ©f deconvolution with inverse filtering can be seen in Figure 4
increasing amplification above but close to zero. This amplifica- Of ref 10. Though the results obtained with a Wiener filter are
tion should gradually decrease to fall off to a negligible size the bestin statistical termgsregularization is not much inferior.
between 7 and 8.6, at the region of the fluctuating constant valueAs in the case of the synthetic data set (see Figure 4 here, and
of the residual absorbance, as this fluctuation should rather beFigures 2 and 3 of ref 10), inverse filtered curves also contain
Suppressed, but by no means |arge|y amp||f|ed (The 0rigina| a Iow-frequency oscillation around the initial zeA®DD, but
trigonally shaped Jansson relaxation function would have a nearknowing that this oscillation is an artifact, we may only keep
maximal value exactly in this region, thus increasing the the monotonically rising part of the initial portion of the curve.
fluctuation in an undesired Way) Above the constant residual However, this initial oscillation enables a ConSiderably steeper
absorbance, especially near the peak of the curve, the decontise than the flat initial part in the case of a Bayesian
volved function should have an enhanced peak, so that thedECOﬂVO'Ution. This is the reason for Obtaining better results
relaxation function should become again very large. Shaping for the parameters than in the case of a Bayesian deconvolution,
the relaxation function this way, we have achieved a really steep €ven if reblurring is applied.

rise after a smooth zero signal level, without the overshooting Deconvolved data sets obtained using different methods,
of the Bayesian deconvolution result, as it can be seen fromresulting in the best fit with the model function published in
the comparison in panel a of Figure 8. In panel b we can seeref 40, are shown in Figure 9. Parameters obtained from the
the corresponding frequency spectra showing that the Janssotiits are shown in Table 2. To facilitate the comparison, Figure
deconvolution results in a lower amplification than the Bayesian 10 shows four parameters obtained with different deconvolution

method in the low-frequency domain, avoiding unnecessary slow

fluctuations as well as overshooting at the relatively shallow
eak. At the same time, it allows higher amplitude at higher
requencies, thus providing the necessary steep rise at early
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TABLE 2: Estimated Parameters Obtained When Fitting the Model Function of Ref 40 to the Three Experimental Datasets
Deconvolved Using Different Deconvolution Methods

Bayesian Jansson Wiener regularized
parameters reconvolution Bayesian reblurred reblurred filtered filtered (y)
21 0.79 (0.06) 0.78 (0.09) 0.75 (0.10) 0.76 (0.10) 0.76 (0.10) 0.77 (0.10)
2 0.53 (0.05) 0.33 (0.05) 0.35 (0.06) 0.38 (0.06) 0.38 (0.07) 0.36 (0.06)
Psss 0.80 (0.01) 0.91 (0.01) 0.91 (0.02) 0.90 (0.02) 0.89 (0.02) 0.90 (0.02)
Pago 0.55 (0.09) 0.64 (0.13) 0.58 (0.17) 0.58 (0.15) 0.56 (0.18) 0.59 (0.16)
Pe1s 0.77 (0.02) 0.84 (0.03) 0.82 (0.03) 0.81 (0.03) 0.82 (0.04) 0.82 (0.03)
Asgs/a90 15.4 (1.2) 27.5(0.5) 27.3(0.6) 26.3(0.7) 26.1(0.8) 26.3(0.7)
Augo/590 70.8(5.1) 62.3 (5.8) 64.8 (7.8) 64.8 (7.2) 65.0 (8.0) 63.9 (7.1)

a Characteristic times; andz, are given in ps units, while molar absorptivitigmpproseare given in drimol~* cm™*. Parameter&pump stand
for the branching ratios of electron detachment to form an immediat®er then solvent separateidn pair at the respective wavelength of the
applied pump pulse. Headings indicate the actual deconvolution method. Numbers in parentheses show the half-widths of 95% confidence intervals.
Bold numbers are the best estimates. Numbers in italics indicate a systematic difference from the corresponding reconvolved results. Bold italics
indicate the best estimate but with a systematic difference.
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Figure 10. 95% confidence intervals in percentage relative to the reconvolved parameter value for the two time constaghts and two
transient Na* absorbance®\sssiag0and Asgos900f the model function described in ref 40 from a global fit to the three deconvolved experimental
curves for data sets obtained with different deconvolution methods.
methods, in a similar manner as the test results of the syntheticrise and immediate fast decay are not interpreted by the kinetic
data in Figure 6. From this comparison and the data of Table 2 and photophysical model of ref 40 quantitatively; it is only
we can see that four of the seven parametgrs;490, Ps15and supposed that this feature appears due to early time absorption
Asoois96 Obtained from a fit of the model function to the and a subsequent fast decay to a weak excited-state absorption
deconvolved data sets are practically identical with those that shifts rapidly to the red via solvation. (See also Figure 3a,c
obtained from reconvolution (the corresponding confidence of ref 41, where the transient peak is more sharp due to the
intervals overlap), but there is a systematic deviation in the casegreater time resolution.) Using a nonparametric deconvolution
of the remaining three parametess Psgs, andAsgs/a9e Whether method, we can nevertheless reconstruct an estimate of the
it is a systematic error introduced by the nonparametric original, undistorted kinetic curve to check the height of this
deconvolution, or a systematic distortion of the parameters initial feature. It turns out that a considerably large peak can be
obtained from reconvolution which is absent in those obtained reconstructed using a simple Bayesian deconvolution of the
from the deconvolved data, we cannot unquestionably decide.reblurred data. As it can be seen from Figure 11, the peak is
Anyway, on the basis of the evidence seen with simulated data,enhanced by a factor of more than 5 due to deconvolution only.
we have quite good confidence in believing that nonparametric This result shows that nonparametric deconvolution allows a
deconvolution resulted in a smaller systematic distortion than much deeper insight into the nature of kinetics and/or photo-
in the case of parameter estimation from the reconvolution. It physics of the femtochemical process even in a case when no
is also interesting to note that errors estimated from the detailed inference from the raw data can be obtained.
deconvolved data are not that much different from those The case of 780/1250 nm data shown in Figure 11 reveals
obtained from reconvolution; typically 2660% higher only. another interesting feature. The measured data set does not have
Moreover, some spectrophysical parameters have a smallera unimodal shape, but there are a very sharp and a rather flat
uncertainty due to an efficient smoothing of the experimental peak involved. Accordingly, the Fourier transform of this curve
error. should show a distinct high-amplitude region at some higher
It should be added, however, that the parameters estimatedrequencies as well, in addition to the typical low-frequency
from the three curves selected are certainly not as statistically behavior peaking at zero frequency. Obviously, the strategy of
accurate as the parameters inferred simultaneously from 22graphical optimization described above for a relatively flat
curves in ref 40, so this study does not really challenge the unimodal function cannot be applied in this case. It should be
parameters reported in the original paper; rather it calls attentionmodified so that after an initial decrease there should be an
to the fact that, here again, nonparametric deconvolution might increase of the amplitude, and the usual monotonic decrease
lead to a less distorted estimated parameter set. should be achieved following this increase. This feature,
A few curves detected between 1200 and 1400 nm show arelatively rare among measured femtosecond kinetic traces,
small peaklike bump at very short time delays. This rather fast shows that one should be cautious to choose the applied strategy
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Figure 11. Dotted line: Experimental ultrafast kinetic curve at 780 nm excitation and 1250 nm detection wavelength (ref 40, Figure 3, panel K).
Solid line: Deconvolved curve obtained with a Bayesian iterative method of the reblurred data, using 350 fs fwhm spread function. Panel a shows
the time-domain data, while panel b shows the corresponding Fourier transforms in the frequency domain along with the solid line (marked “not
filtered”) showing the inverse filtered amplitude spectrum without additional noise filtering.

for a graphical optimization with actual measured data sets. A parameters obtained this way were less biased than those
careful investigation of the Fourier transform of the measured obtained with a classical reconvolution, i.e., inferring parameters
function usually offers the guide for a proper optimization from fitting measured data to the convolved model functions.
procedure. In this example, it is clear from the frequency However, we were unable to find any target functions that could
spectrum marked “not filtered” in panel b that the onset of the be used to quantitatively indicate optimal filter parameters or
undesirable noise amplification appears only after the slight iterative results in the case of experimental data when the true
increase in amplitude responsible for the initial sharp peak. signal is not known. To treat this problem, we have developed
a graphical method based on the observation of the frequency-
Conclusion domain behavior of the Fourier transforms of the deconvolution

. . result, the measured data set and that of the simple inverse
We have thoroughly examined the possibility of model-free ivoreq result without any noise filtering. We have found that

deponvglution of femtosecpnd kinetip data'using a('jap'gatio'ns the visual observation of these curves provides rather robust
of iterative methods n th? time d_qmaln an_d Inverse filtering in deconvolution results. If a frequency sensitive deconvolution
the frequency domain with additional noise filters. We have is needed, inverse filtering can be an appropriate choice. In the

fognd th?jt ttr?e t)[/volr'r(wajorr] probltfams to i'ON? atre experimental case if the efficiency of the deconvolution should be different
noise and the steplike shape of many Kinetic traces. depending on the amplitude, the time-domain iterative Jansson

The steplike signal_shape results_ in a fairly distorted Fourier method with a suitably shaped relaxation function offers the
transform, as the cyclic transformation introduces a sudden droppagt possibility.

or rise in the data set, which leads to the appearance of virtual
high-frequency components. The method of Gans and Natiman

suggested in the signal processing literature avoids this problem
by doubling the data set in a way that results in a periodic

function without the sudden change. To treat the consequence
of experimental noise which renders the solution of the
convolution equation largely unstable, we have found powerfu
additional noise filters. In the time domain, the procedure called
reblurring®2! turned out to be a sufficient noise pretreatment

We have also tested all the methods that could be used to
deconvolve synthetic data sets to the deconvolution of real-life
experimental datf It turned out that there can appear some

ew features of the measured data which were not appertaining
0 the synthetic data studied, but adaptation of the findings with
| the synthetic data are quite straightforward based on the actual
shape of the experimental kinetic traces. In the case of an
unresolved experimental data set, where the rather fast feature

to avoid the spurious behavior of the deconvolved data set during'nVOIVed has no explana.uon ygt, the mpdel-free deconvolution
iterative deconvolution. This treatment consists of the convolu- has revealed a substantially different signal shape from that of
tion of both the measured signal and the effective pulse with (€ detected data.
the time-inverted pulse, and the subsequent deconvolution of We continue our efforts to find some more heuristic decon-
the smoothed signal using the reblurred pulse, which is its Volution methods, as for example the genetic algorithm that
autocorrelation. In the frequency domain, this pretreatment doeswould enable the use of quantitative criteria to find an optimal
not help, as inverse filtering is highly sensitive even to very deconvolved data set even if the original undistorted signal is
small numerical noise. The solution in this case is a composite Unknown. It should also be mentioned that deconvolution
filter, i.e., the simultaneous application of a suitable noise filter methods implemented and analyzed can have a more wide
with the inverse filter. Adaptive Wiener filterifg3? and application range than femtosecond chemistry. Whenever
regularizatioR®343¢ gave satisfactory results in efficiently relatively slowly varying steplike functions are measured
reducing the noise while leading only to a very small distortion distorted by convolution, all the methods described here might
of the useful signal. be worth trying.

A thorough analysis of the numerical implementation of the
above-mentioned methods with simulated synthetic data revealed Acknowledgment. The authors thank TateaDabazi for
the existence of optimal deconvolution to reconstruct the original enlightening discussions concerning discrete Fourier transforma-
undistorted data, and the good quality of the results as a basigions and inverse filtering. This work was supported by the
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